1,168 research outputs found

    The actions of Pasteurella multocida toxin on neuronal cells

    Get PDF
    Pasteurella multocida toxin (PMT) activates the G-proteins Gα, Gα, Gα Gα and Gα by deamidation of specific glutamine residues. A number of these alpha subunits have signalling roles in neurones. Hence we studied the action of this toxin on rat superior cervical ganglion (SCG) neurones and NG108-15 neuronal cells. Both Gα and Gα could be identified in SCGs with immunocytochemistry. PMT had no direct action on Kv7 or Cav2 channels in SCGs. However PMT treatment enhanced muscarinic receptor mediated inhibition of M-current (Kv7.2 + 7. 3) as measured by a 19-fold leftward shift in the oxotremorine-M concentration-inhibition curve. Agonists of other receptors, such as bradykinin or angiotensin, that inhibit M-current did not produce this effect. However the amount of PIP hydrolysis could be enhanced by PMT for all three agonists. In a transduction system in SCGs that is unlikely to be affected by PMT, Go mediated inhibition of calcium current, PMT was ineffective whereas the response was blocked by pertussis toxin as expected. M1 muscarinic receptor evoked calcium mobilisation in transformed NG108-15 cells was enhanced by PMT. The calcium rises evoked by uridine triphosphate acting on endogenous P2Y receptors in NG108-15 cells were enhanced by PMT. The time and concentration dependence of the PMT effect was different for the resting calcium compared to the calcium rise produced by activation of P2Y receptors. PMT's action on these neuronal cells would suggest that if it got into the brain, symptoms of a hyperexcitable nature would be seen, such as seizures. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved

    Biomechanics and hydrodynamics of prey capture in the Chinese giant salamander reveal a high-performance jaw-powered suction feeding mechanism

    Get PDF
    During the evolutionary transition from fish to tetrapods, a shift from uni- to bidirectional suction feeding systems followed a reduction in the gill apparatus. Such a shift can still be observed during metamorphosis of salamanders, although many adult salamanders retain their aquatic lifestyle and feed by high-performance suction.Unfortunately, little is known about the interplay between jaws and hyobranchial motions to generate bidirectional suction flows. Here,we study the cranial morphology, aswell as kinematic and hydrodynamic aspects related to prey capture in the Chinese giant salamander (Andrias davidianus). Compared with fish and previously studied amphibians, A. davidianus uses an alternative suction mechanismthat mainly relies on accelerating water by separating the ‘plates’ formed by the long and broad upper and lower jaw surfaces. Computational fluid dynamics simulations, based on three-dimensional morphology and kinematical data from high-speed videos, indicate that the viscerocranial elements mainly serve to accommodate the water that was given a sufficient anterior-to-posterior impulse beforehand by powerful jawseparation.We hypothesize that this modifiedway of generating suction is primitive for salamanders, and that this behaviour could have played an important role in the evolution of terrestrial life in vertebrates by releasing mechanical constraints on the hyobranchial system

    Pilot phenotype and natural history study of hereditary neuropathies caused by mutations in the HSPB1 gene

    Get PDF
    Mutations in HSPB1 are one of the commonest causes of distal Hereditary Motor Neuropathy (dHMN). Transgenic mouse models of the disease have identified HDAC6 inhibitors as promising treatments for the condition paving the way for human trials. A detailed phenotype and natural history study of HSPB1 neuropathy is therefore required in order to inform the duration and outcome measures of any future trials. Clinical and neurophysiological data and lower limb muscle MRI were collected both prospectively and retrospectively from patients with mutations in HSPB1. The natural history was assessed by recording the weighted Charcot-Marie-Tooth Examination Score (CMTES) at annual intervals in a subset of patients. 20 patients from 14 families were recruited into the study. The average age of onset was in the 4th decade. Patients presented with a length dependent neuropathy but with early ankle plantar flexion weakness. Neurophysiology confirmed a motor neuropathy but also showed sensory nerve involvement in most patients. Cross sectional muscle MRI revealed soleus and medial gastrocnemius fat infiltration as an early signature of mutant HSPB1 disease. In this study neither semi quantitative muscle MRI, the CMTES nor neurophysiology were able to detect disease progression in HSPB1 neuropathy over 1 or 2 years. Further studies are therefore required to identify a suitable biomarker before clinical trials in HSPB1 neuropathy can be undertaken

    Hereditary sensory and autonomic neuropathy type 1 (HSANI) caused by a novel mutation in SPTLC2.

    Get PDF
    To describe the clinical and neurophysiologic phenotype of a family with hereditary sensory and autonomic neuropathy type 1 (HSANI) due to a novel mutation in SPTLC2 and to characterize the biochemical properties of this mutation

    Evidence for a Mass Dependent Step-Change in the Scaling of Efficiency in Terrestrial Locomotion

    Get PDF
    A reanalysis of existing data suggests that the established tenet of increasing efficiency of transport with body size in terrestrial locomotion requires re-evaluation. Here, the statistical model that described the data best indicated a dichotomy between the data for small (<1 kg) and large animals (>1 kg). Within and between these two size groups there was no detectable difference in the scaling exponents (slopes) relating metabolic (Emet) and mechanical costs (Emech, CM) of locomotion to body mass (Mb). Therefore, no scaling of efficiency (Emech, CM/Emet) with Mb was evident within each size group. Small animals, however, appeared to be generally less efficient than larger animals (7% and 26% respectively). Consequently, it is possible that the relationship between efficiency and Mb is not continuous, but, rather, involves a step-change. This step-change in the efficiency of locomotion mirrors previous findings suggesting a postural cause for an apparent size dichotomy in the relationship between Emet and Mb. Currently data for Emech, CM is lacking, but the relationship between efficiency in terrestrial locomotion and Mb is likely to be determined by posture and kinematics rather than body size alone. Hence, scaling of efficiency is likely to be more complex than a simple linear relationship across body sizes. A homogenous study of the mechanical cost of terrestrial locomotion across a broad range of species, body sizes, and importantly locomotor postures is a priority for future research

    Divergent evolution of terrestrial locomotor abilities in extant Crocodylia

    Get PDF
    Extant Crocodylia are exceptional because they employ almost the full range of quadrupedal footfall patterns (“gaits”) used by mammals; including asymmetrical gaits such as galloping and bounding. Perhaps this capacity evolved in stem Crocodylomorpha, during the Triassic when taxa were smaller, terrestrial, and long-legged. However, confusion about which Crocodylia use asymmetrical gaits and why persists, impeding reconstructions of locomotor evolution. Our experimental gait analysis of locomotor kinematics across 42 individuals from 15 species of Crocodylia obtained 184 data points for a wide velocity range (0.15–4.35 ms−1). Our results suggest either that asymmetrical gaits are ancestral for Crocodylia and lost in the alligator lineage, or that asymmetrical gaits evolved within Crocodylia at the base of the crocodile line. Regardless, we recorded usage of asymmetrical gaits in 7 species of Crocodyloidea (crocodiles); including novel documentation of these behaviours in 5 species (3 critically endangered). Larger Crocodylia use relatively less extreme gait kinematics consistent with steeply decreasing athletic ability with size. We found differences between asymmetrical and symmetrical gaits in Crocodylia: asymmetrical gaits involved greater size-normalized stride frequencies and smaller duty factors (relative ground contact times), consistent with increased mechanical demands. Remarkably, these gaits did not differ in maximal velocities obtained: whether in Alligatoroidea or Crocodyloidea, trotting or bounding achieved similar velocities, revealing that the alligator lineage is capable of hitherto unappreciated extreme locomotor performance despite a lack of asymmetrical gait usage. Hence asymmetrical gaits have benefits other than velocity capacity that explain their prevalence in Crocodyloidea and absence in Alligatoroidea—and their broader evolution

    Ultrasonic Nondestructive Evaluation Using Laser Transducers

    Get PDF
    A program is described which employs lasers for ultrasonic NDE. A high-power laser is used to generate a brief sound pulse in the test specimen. A second low-power laser then measures the response of the specimen to that sound pulse. The response of the specimen is measured by a “Laser Vibrometer.” This is a novel type of heterodyne interferometer which focuses a Helium-Neon laser beam onto the surface of the specimen and measures its displacement. Displacements as small as 2×10-12 meters on a 0.15 sec averaging time can be detected and also displacements of 1.5×l0-9 meters on a 10-MHz bandwidth. The Laser Vibrometer has a well defined frequency response and does not introduce distortion. The sound generating laser is either a pulsed carbon dioxide TEA laser or a YAG laser. The peak power exceeds 10 M watt. Two mechanisms for generating the sound are discussed. The thermoelastic mechanism relies on the thermal expansion of the surface, causing it to move. The reaction to this causes a pressure pulse in the specimen. Another mechanism allows a small amount of the surface to be ablated and the reaction to this causes a substantial pressure pulse in the specimen. Both laser beams can be scanned over the surface of the specimen by a microprocessor controlled mirror. The microprocessor generates a raster scan of arbitrary size, number of lines, step size and speed. Eventually this technique will allow the inspection of complex specimens without direct contact. This will eliminate the tedium and contact reliability problems associated with conventional piezo-ceramic NDE

    Using geographically weighted regression to explore the spatially heterogeneous spread of bovine tuberculosis in England and Wales

    Get PDF
    An understanding of the factors that affect the spread of endemic bovine tuberculosis (bTB) is critical for the development of measures to stop and reverse this spread. Analyses of spatial data need to account for the inherent spatial heterogeneity within the data, or else spatial autocorrelation can lead to an overestimate of the significance of variables. This study used three methods of analysis—least-squares linear regression with a spatial autocorrelation term, geographically weighted regression (GWR) and boosted regression tree (BRT) analysis—to identify the factors that influence the spread of endemic bTB at a local level in England and Wales. The linear regression and GWR methods demonstrated the importance of accounting for spatial differences in risk factors for bTB, and showed some consistency in the identification of certain factors related to flooding, disease history and the presence of multiple genotypes of bTB. This is the first attempt to explore the factors associated with the spread of endemic bTB in England and Wales using GWR. This technique improves on least-squares linear regression approaches by identifying regional differences in the factors associated with bTB spread. However, interpretation of these complex regional differences is difficult and the approach does not lend itself to predictive models which are likely to be of more value to policy makers. Methods such as BRT may be more suited to such a task. Here we have demonstrated that GWR and BRT can produce comparable outputs

    The differential hormonal milieu of morning versus evening, may have an impact on muscle hypertrophic potential

    Get PDF
    Substantial gains in muscle strength and hypertrophy are clearly associated with the routine performance of resistance training. What is less evident is the optimal timing of the resistance training stimulus to elicit these significant functional and structural skeletal muscle changes. Therefore, this investigation determined the impact of a single bout of resistance training performed either in the morning or evening upon acute anabolic signalling (insulin-like growth factor-binding protein-3 (IGFBP-3), myogenic index and differentiation) and catabolic processes (cortisol). Twenty-four male participants (age 21.4±1.9yrs, mass 83.7±13.7kg) with no sustained resistance training experience were allocated to a resistance exercise group (REP). Sixteen of the 24 participants were randomly selected to perform an additional non-exercising control group (CP) protocol. REP performed two bouts of resistance exercise (80% 1RM) in the morning (AM: 0800 hrs) and evening (PM: 1800 hrs), with the sessions separated by a minimum of 72 hours. Venous blood was collected immediately prior to, and 5 min after, each resistance exercise and control sessions. Serum cortisol and IGFBP-3 levels, myogenic index, myotube width, were determined at each sampling period. All data are reported as mean ± SEM, statistical significance was set at P≤0.05. As expected a significant reduction in evening cortisol concentration was observed at pre (AM: 98.4±10.5, PM: 49.8±4.4 ng/ml, P0.05). Timing of resistance training regimen in the evening appears to augment some markers of hypertrophic potential, with elevated IGFBP-3, suppressed cortisol and a superior cellular environment. Further investigation, to further elucidate the time course of peak anabolic signalling in morning vs evening training conditions, are timely
    corecore